PISOT NUMBERS AND THE WIDTH OF MEROMORPHIC FUNCTIONS

by

David W. Boyd
Department of Mathematics
University of British Columbia

Vancouver, Canada

January 22, 1977



PISOT NUMBERS AND THE WIDTH OF MEROMORPHIC FUNCTIONS

by David W. Boyd

ABSTRACT

Associated with the set S of Pisot numbers is a set tf of rational
functions which are bounded in modulus by 1 on the unit circle, and have
a single pole inside the circle at the reciprocal of a Pisot number.
Dufresnoy and Pisot introduced an algorithm, based on Schur's classical
algorithm, which can be used to generate all members of af , and hence all
of S . This paper can be regarded as the theoretical preparation for a
future paper which the author is currently writing, which will deal with
applications of this algorithm to questions about Pisot numbers, Pisot
sequences and Salem numbers.

Each f in tf is determined by an infinite path in a tree associa-
ted with the above algorithm. We introduce a functional on t? , w(f),
called the "width" of f , which has a natural interpretation in terms of
this tree. From w(f), we obtain a function w(f) on S which is the
maximum of w(f) over all f with poles at 6_1. The quantity w(6)
measures the complexity of S near the point 6 . For example w(8) =0
if © 1is an isolated point of S , and w(6) > h if 6 1is in S(h),
the hth derived set of S.

Our main result is an explicit formula for w(f). A simple corollary

of this formula is that min S(h) > (h+1)1/2. The sharpness of this
inequality is investigated by special arguments. Since w(f) is not continuous,

a formula developed for 1lim w(fn) is of some interest.
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PISOT NUMBERS AND THE WIDTH OF MEROMORPHIC FUNCTIONS

By David W. Boyd (1)

Introduction: Our main purpose here is to study certain aspects of the

structure of the set S of Pisot (or Pisot-Vijayaraghavan) numbers. In
particular, we shall be interested in the successive derived sets S(h)
of S. The reader will recall that S is the set of real algebraic
integers 6 > 1 all of whose remaining conjugates lie strictly within
the unit circle. The set S 1is closed, according to a well-known result
of Salem [14].

Dufresnoy and Pisot [4-7] have shown that an effective way to deter-
mine detailed properties of S 1is to relate questions concerning S to
questions about a set C of rational functions bounded by 1 in modulus

on the unit circle. In [6] they solved the '"coefficient problem'" for '

by giving a sequence of inequalities wn(uo,...,u

< *
n—l) f_un __wn(uo,...,u l)

n..
which must be satisfied by the sequence {un} of Taylor coefficients of

any f in e:. Using this result they were able to determine all the numbers

s

in S~ [1,7], and show that T = (V5 + 1)/2 min
Our main tool will be a functional w(f) defined for f in Ci by
lim (w; - wn)/Z . We call w(f) the width of f. This 1limit was shown to
exist in [6], but no explicit use was made of this fact. In section 1, we
give a combinatorial interpretation of w(f) which suggests why it is an
interesting object of study.
A basic result is Theorem 1, which gives an explicit formula for w(f)

. . 2 . . .
in terms of the geometric mean of 1 - ]f] on the unit circle. This

formula is valid for the class of meromorphic functions considered by




Chamfy [3] and described in section 2. As a Corollary of Theorem 1, we show

/4

that min S(h) > (h + 1)1/2 which improves the estimate h1 of [5].

The functional w is not continuous on C:, but it is possible to give
some information about w(fn) if fn -~ f in af and we investigate this in
section 4. Corollary 7 of Theorem 2 gives a formula for 1lim w(fn) if

f

N (A + an)/(Q + an). We use this result to investigate w(f) on the

set of f associated with the set SN [1,2) and show that w(f) attains

5—26). Another

a maximum w(f) = 1.9877... for £ = (1-z)(1+z°)/(1-2z+z
application settles a natural question concerning the relationship between
w(f) and the "index of derivability" of f.

An interesting (and open) question is whether or not our estimate of
min S(h) is sharp in the sense that min S(h) ~ hl/2 . In section 5,
Theorem 3, we show that if 6 = k, a rational integer, then k & S(Nk)
where Nk/k > 2/(2/2 - 1) > 1. This shows that 1lim inf(min S(h)/h) > 1.

(3)

We also give a special argument to show 3 & S The results of section

2 do not rule out the possibility that 3 & 8(7).

1. The class ti and the algorithm of Dufresnoy and Pisot.

Associated with each 6 in S 1is its minimal polynomial P(z) of
degree s, say, and the reciprocal polynomial Q(z) = zSP(z‘l) which has
Q(0) = 1, integer coefficients, and exactly one zero 6_1 in 'zl < 1.

If A(z) 1is a polynomial with integer coefficients, not identical with Q,
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having A(0) > 0 and IA(Z)] f_]Q(z)[ for |z| = 1 , then the rational
function f = A/Q 1is said to be associated with 6 . Such A do exist,
in fact A = P is suitable unless Q(z) =1 - qz + 22 in which case
A(z) =1 1is available.

The set of such f 1is denoted Cf. It is clear that f has the
following properties:

(i) f 4is holomorphic in |z] < 1 except for a simple pole at
-1

z =6 <1,
(ii) |f(z)] <1 on |z| =1,
(iii) f(z) = Ug Uzt for [z] < 6_1 , where the u ~are

integers and Uy > 1

In fact & is characterized by these properties by a result of Pisot
(see Salem [15]).

The set € can be given a topology by defining convergence to mean
uniform convergence (in the metric of the Riemann sphere) on compact
subsets of |z| < 1. A basic result of Pisot [13,p.42] is that, for any
§ >0, theset {fel: 6 < 6-1} is compact. This implies that S
is closed. 1If fn—+ f in C: then the Taylor expansion of fn coincides
with that of f to an arbitrarily large number of terms.

The derived sets a:(h) of a: have been characterized and used to
S(h).

characterize the sets Dufresnoy and Pisot [4] showed that f'é-Cfl)

if and only if f = A/Q where |A(2) | §_|Q(z)] for |z| =1 with equality
at a finite number of points at most. Thus f is an isolated point of e: if
and only if f(z) = * zSQ(z_l)/Q(z). Grandet-Hugot [9] has characterized

th) for all h. The result for h =2 is that A/Q € 22(2) if and only if
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there are polynomials B and C with integer coefficients, not both
identically zero, such that B/Q and C/Q are in Ci(l) or identically zero,
and (A + an)/(Q + an) is in ti(l) for all n > 0. In general, the
existence of 2h - 2 auxiliary polynomials is required. In addition, the
Pisot number 6 is in S(h) if and only if there is an f e E:Ul) which is

associated with 6 [4,9]. It is shown in [5] that min S(h) + o _ so the

following make sense:

Definition 1. If f €& é‘_’ , define h(f) = max {h: f & t(h)} . If 6 € s,

define h(8) = max {h: ee,s(h)} . We call h(f) (or h(6)), the index of

derivability of f (or 6 respectively).

To investigate C?, Dufresnoy and Pisot [6] investigated the coefficient
problem for a wider class of functions, namely the set of f satisfying (i)
and (ii), but with real coefficients and f(0) = uO-i 1. They showed that

the coefficient sequence u for such an f satisfies the following system

of inequalities:

0
(1)
ug -1 < Uy
* —
wn(uo,...,un_l) < uy < wn(uo,...,un_l) , n=2,3,...

The bounds on u o, n > 2 restrict u to a finite interval except in one

case, namely if u, =1 and n = 2, then wr = ® . The functions w s w”

0 2 n’ n
are rational functions of their arguments. They are recursively generated by
means of certain polynomials Dn,D; as described in [6]. The system (1) in
fact characterizes the coefficient sequences for a larger class of functions
than they considered, as we point out in Section 2.

If u, =w_ or u_ = w; for any s , then f 1is uniquely determined

S S
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and in fact is of the form zSQ(z_l)/Q(z) for a polynomial Q (which need

not have integer coefficients). In this case W= w; for all n > s, 1If
w # w* then
n n
* - = - * *  _
(2) Ynel wn+1 4(un wn)(wn un)/(wn wn)

from which one deduces that {w; - wn} is a decreasing sequence.

Definition 2. We define the width of f € Z; by

- 3 * -
w(f) = 1lim (wn(uo,...,un_l) wn(uo,...,un_lj)/Z .
n > «
We can rewrite (2) in terms of a_ = u - w and b_=w* - u_ . Then
n n n n n n
(3) (3,1 * bpp)/2 = &b /((a + b )/2)

A result of [6,p.83] becomes

2
4) I (@ -b)° < =,
ns=3
so that
(5) lim an = lim bn = lim (an + bn)/2 = w(f)
n > © n-—> o n > ©

For the class t?, there is a relation between h(f) and w(f) which follows

from a result of Grandet-Hugot:
Lemma 1. If f 68 then h(f) < w(f).

Proof: A result of [9,p.24] shows that if f GEC:(h) , then for all sufficiently

large n, w_+ h < u_ < w; - h . Thus 2h f_lim(w; - wn) = 2w(f).

For the class Ci , the fact that the u, ~are integers means that (1)

completely characterizes the coefficient sequences. Hence (1)
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provides an (unbounded) algorithm for the determination of all f Eééf. In

a later paper we shall show how this algorithm can be used to determine all
Pisot numbers in certain intervals and to give lower bounds on certain classes
of Salem numbers, using results of [2]. Such an algorithm is most naturally
described in terms of a tree :7. Each vertex of this tree at height n is
specified by a finite sequence of integers (uo,...,un) satisfying (1),

where the empty sequence * is the root of the tree at height -1. The

successors of (uo,...,un) are all (uo,...,u w*

i < <
with wn+1 __un+1 A

n’un+1)
(if any such exist). Except for vertices of the form *, (uO) or (1,u1) ,
all other vertices have a finite number of successors, i.e. have finite valence.

An £ € ¢ with coefficient sequence {un} corresponds to a path to
infinity *, (uo), (uo,ul),... in J'. The quantities [an], [bn] are the

number of paths which branch to the left and right respectively at level n.
Thus (5) expresses a certain homogeneity of the tree and makes apparent the
intrinsic signifigance of w(f),.

We can show the fruitfulness of this point of view by the following
result which is a simple application of KBnig's infinity lemma [12,p.381].

We first give

Definition 3. If § € S, define w(8) = sup {w(f) : f étand f has a pole

at 6_1}

Lemma 2. The supremum in Definition 1 is a maximum. That is, there is an

f é.tf with pole at 6_1 for which w(f) = w(98).

Proof: Let the set of f associated with & be denoted Z% . Consider the

subtree :7

5 of ;7 corresponding to expansions of f in C%. Every vertex




in U; has a finite valence. For, as in [17], we have

u2 + (u

2
0 - uoe) + (u

- ule)2 + ... < 1 +6

1 2

by applying Bessel's inequality to (1 - 6z)f(z). Hence, by induction,

(uo,...,un) has only a finite number of possible successors for any n.

For any f = u,  +u,z +

0 1 ... , consider g =v, + v,z + ... in

0 1
! t
with v. =u, for j <n, but v. -u =c¢# 0. Write a. , b. for
J J n n J J

aj(VO""’Vj—l) and bj(vo,...,vj_l). Then (3) and (5) imply

1 1 2
(6) w(g) < (a q*+b . )/2 = (a+ )b - c)/((a+b)/2) > w(f) - kK*/u(f),
as n >« , Thus, there is an integer N(f) such that if n > N(f) , and

g # £ has its first n components equal to those of f then w(f) > w(g).

1

We replace G% by a tree ‘76 obtained by '"pruning" f at level
N(f). That is, all vertices (uo,...,uN(f),...,um) are replaced by the
single vertex (uo,...,uN(f)) which is labelled f. The resulting tree

1
has no paths to infinity and all vertices have finite valence, hence :76

4
is a finite tree, by K8nig's lemma. Each terminal vertex of :76 is
associated with an f which maximizes w(f) over all g with initial
coefficients (UO""’uN(f))’ One of these f necessarily maximizes w(f)

over t%.




2. The generalized Schur algorithnm. Theorem 1 of the next section applies

to a class of meromorphic functions which contains af. We shall let 7np
denote the class of functions which are meromorphic in |z| <1, holomorphic

at the origin, have a finite number p of poles in |z| <l, say at =z = 61

-1 -1

S seeesy O and are such that
2 P

- P
g(z) £(z)(z - 507 (1 - 0,2)...(z - 8,0 (1 -0.2)

is bounded by 1 in modulus in |z| <I. Then ¢ has radial limits a.e.
[11,p.38], so the definition of f extends to |z| =1, and |f(z)] <1
for almost all such z.

Schur [16] showed that the set 7ﬂ0 could be studied by applying the
following familiar process: set fo(z) = f(z), and then successively

(7)

w1 @ = (E ) -y )/z(0 - ¥ £ (2) , where  y_ = £ _(0).

If fn is a non-constant function in 'WQO then fn+l is in 7n0. 1f fS

is a constant Yo with |YS[ < 1 then fn is identically 0 for n > s.

If fS is a constant of modulus 1, then fn is undefined for n > s. 1In
this latter case f is a rational function of the form ezsﬁkz_l)/Q(z),
where Q is a polynomial with no zeros in |z] <1 and lel =1

The coefficient Y, is a function @n(uo,...,un). Schur proved that

the inequalities |®n(u0,...,un)| <1 , with strict inequality for all n

or else with equality for n = s, characterize the coefficients of fe;xﬂo.
Chamfy [3] showed how to extend these considerations to the class %QP.

Now, in addition to the basic transformation (7), which applies if |fn(0)| <1,

there are two other transformations required if |fn(0)| >1 or = 1,

respectively. If f = v  + vz + .. with |v

N 0 n > 1 and v £ 0,

ol




then one passes from f_ to f , while if ]v | =1 and v_# 0, one
n n+m 0 m
passes from fn to fn+2m . Thus a sequence
(8) fO’ fl, RN fn R fs s
0
is generated, where certain of fl""’ fn _q May be undefined. However,
0

Chamfy showed that, for some finite ny s fn is holomorphic and the

0

process eventually becomes (7), so Schur's results apply.

Chamfy also showed how to form the inequalities analogous to (1) in case
f has real coefficients. Grandet-Hugot [9] treated the case of complex
coefficients, and we give a partial account of Theorem 1 of [9] as Lemma 3.

As with Schur's original process, the sequence may eventually end with a

constant of modulus 1, fS . We shall say f has range s in this case,
and range <« otherwise. An f of range s 1is of the form Ezsﬁ(z—l)/Q(z),
where Q has p =zeros in |z| < 1, and le] = 1.

Lemma 3. Let f be in ‘th with range s (possibly ), and expansion

Uy *ujz+ ... near 0. There is an n, such that, for n, <n<s, a
unique pair of polynomials An and Qn of degree at most n exists which
satisfy:

(9) Q,(0) =1 and Q, has p zeros in lz| < 1,

(10) fA_(2)] < 1Q,(z)|  for |z

1, if n < 's, while

IAS(Z)I = |Qs(z)[ for |z| =1,

n n+l
(11) An(z)/Qn(z) Ug ¥ Wz + .ot w2 +s oz + L.

(12) Qn(Z)QA(Z_l) - An(z)Kh(z_l) = w , independent of ¢z,
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(13) W

|un+1 - Sn+l| R

If An has leading coefficient Y, then

(14) Yool = (har ~ Spepd/en
(15) W = w (1 -y |2)
n+1 n n+1 )
Definition 4. For f’ékﬂp we define w(f) = 1lim W, (=0 if f
n-> o«
has range s < ),

Note that (15) shows W, is non-increasing, and that (13) corresponds
to (1) so Definitions 1 and 4 are consistent. We note that if fn is the
sequence of (2) then, for n, < n < s, we have

n+l — . -1 n+l — -1
(16) f(z) = A, + 27 QG I, (2)/ Q) + 2" K (TOHF L (2),

and that fn(O) = vy, 1is the sequence of Lemma 3. The sequences An’Qn

satisfy recurrence relations given in [9], although it should be pointed out
that (4) and (5) of [9,p.5] are incorrect. The correct relations can be

derived from (7) and (16). We note that, if f GZ”ZO , then Yo is

defined for all n<s, and

2
(17) w o= - vl
k=20
It is worth mentioning that Wall [18] has recast Schur's algorithm (forZﬂb)
as a continued fraction algorithm in which An/Qn appears as a convergent of

even order.

The reader familiar with [6] should note that Dn(z) = An_l(z) - ann_l(Z_l),
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* n -1
and Dn(z) = An_l(Z) +z Qn—l(z ).

Remark. Chamfy [3] in fact formulates her results for the class of functions
which are meromorphic in the closed disk |z] < 1, and satisfy the other
conditions in the description of 771p . The conditions derived by Schur [16],
on the other hand, are necessary and sufficient to characterize the coefficient

sequence of an f & m so in fact Chamfy's results give only necessary

0’
conditions for the class she considers. However, it is easy to verify that
the considerations of [3] carry through for fé?;?Zp; one need only verify
that the Lemma on p.218 of [3] is valid for this class of f , and this is
an easy matter.

Dufresnoy and Pisot [6] do not discuss the question of which_class of

functions (1) characterizes. For their purposes, it is enough that (1)

is a necessary condition for f to be in C?. In fact, (1) is both necessary

and sufficient for f , with real coefficients and U > 1 or ug = 1, to be
in ‘nzl . If such an f has integer coefficients then it is rational, by
[15], and hence is in Cz . Thus (1) provides a complete characterization

in this case.

3. A formula for the width of a function.

We shall need some properties of the geometric mean of a bounded

measurable function defined on |z| = 1. If g(elt) > 0, we write

1 2m it
'SL(g) = exp {—ﬁ J log g(e™ ") dt}
0
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We will always have ﬁi(g) < o  but possibly éi{g) =0 if log(g) is

not integrable. Some well-known properties of ﬁZ [10,pp.136-138] are

(18) fe) = Le)pLe)
(19) L, vy > Lep + Lisy
1T e
(20) L) < A = @n j gle’™y dt .
0

Also, we have Jensen's formula [11,p.68]: if f & Hl , f(0) #0 , and f

vanishes in |z| < 1 exactly at QUps wees Qs then

-1
|

2

(21) ;’i(|f|) = A |f(0)||oc1[_1 oo

where X > 1 1is a contribution due to the singular part of f. 1If f 1is
holomorphic in \ZI <1 then X1 = 1. Finally, we will need a form of

Szegd's theorem [11,p.50]: if g(elt) > 0 1is integrable on [0,27m), then

(22) L@ = it Aty
P

where P(z) = 1+ blZ + ...t bkzk .

Theorem 1. Let f be in ??Zp with poles at 8_1 ces 6_1 . Then

1’ P
2 2 2
(23) w(f) = 0] --- ep 7,%(1 - 1£15
Furthermore, if f = A/Q 1is a rational function, and if Q(z)y =

zr(Q(z)Q(z—l) - A(z)KIz_l)), where T 1is chosen so that § is a polynomial

with Q(0) # 0, then
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(24) wif) = o] Zda

-2
(25) w(f) = [Q(0)] ° |2(0)] l max (|al,1) ,
o
where the product in (25) is over all roots of § .

Proof: We begin by showing that we can reduce the proof to the case of

. . * n— ., -1 * n—=_ -1
holomorphic f. Write A (z) = z A [z ) and Qn(z) =z Qn(z }, and
then, for n i_no, (16) is (A + anf +1)/(Q f +l) . Since the

numerator and denominator are holomorphic, the denominator, D, must vanish

at the poles of f. Using (12), we have, for ]z] =1

2

(N N T o T U N o VA L T e SV

l n+1|

Thus, from (18) and (21)

26)  La - |51 = o da - e Do

<, :ijl - £, % 8" ... 0.2,

since D(0) = 1 and it vanishes at 91

]

Now, inverting (16), we have f

ne1 = FQ - A/zZ(@Q - AT £) LAt

z = 0, using (11) and (12), the expansion of the denominator of this

. . n+l
expression begins w2 . For |z| =1, we have

2 2w o
e 1= e 1P = dalf - 1A ha - g )/ 1 - ar g]?

= o, (- [f5/]Q - ar ]

n

If B is the product (1 - elz)(§i - zjl--o(l - 6pz)(§£ - z)_l so that




g = Bf 1is holomorphic in |z| < 1 , we have, since |B| = 1 on ]z| =
* * _ * * _ —1'.. -1

(28) fZ(IQn - A fl) = iZ([BQn - Aanl) > ]B(O)lwn = 8 ep W,
Thus, (27) and (28) give

2 2 -2 .2 2
(29) Za-1e 15 < wda- £ e’ ol 0
Combining (26) and (29) we see that

2 2 2 2
(30) 0y *er 0 Ja -89 = u, La- 1£.,,07 5 n>ng .
Now (17) and (15) together imply that
m
. 2
(31) WE =y ln I'T a- 17 = e Wl L)
j = n+1

Comparing (30) and (31), we see that (23) will follow for f as soon as

it is proved for fn+1 ,which is holomorphic. Thus, we now assume that

f is holomorphic. For such £, (26) (or (30) ) gives ;%(1 - |f|2) <

and letting n > « , é%(l - |f|2) < w(f).

To prove the reverse inequality, given e > 0, use (22) to find a

polynomial P(z) =1 + blz + oo F bkzk such that

2 2 2
(32) Adr)? a - 167y < Za-eH « e
If we adopt the convention that u. = 0 for m < 0, then

[o 0]

k
P(z)f(z) = [ b.u .J 2"
mZO ! jzo ) m)

Thus, applying Parseval's relation, the left member of (32) can be written

w
n

>
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(53 AdPI® - [pe[f) = AdpH -]
Now An/Qn is holomorphic, and we have
(34) o = g - [a/l® < Adel? - e s 1P

2

by Bessel's inequality and (11). Let n » « in (34), then use (32) and

(33) to obtain

wiE) < AP pE1Y) < Za -|f%) s e

Since € > 0 1is arbitrary, we have proved (23) for p = 0 and hence for all p.

The proof of (24) uses |Q]| = |Q|2(1 - |f|2) on |z| =1, and (21)
: : 2 2 .2 2
to identify F(]Q|%) = [Q(0)|” 67+ 9, - The proof of (25) uses (21) and

the fact that  1is a reciprocal polynomial.

Remarks. 1. For f E_Hﬁ , the condition for f to be an extreme point of
the unit ball is that (in addition to |f(e'®)| < 1 a.e.), (1 - |£]) =0
[11,p.138]. This is the same as (1 - |£]%) = 0 since 1< Z(1 + |£]) < 2.

Thus w(f) = 0 for f'ézmo if and only if f is an extreme point of the unit
ball of H . This is not an altogether unexpected result.

2. An earlier proof which we obtained for Theorem 1 in case of rational
f = A/Q contains a result of some independent interest. Namely, the sequences

An s Qn individually converge uniformly on compact subsets of the unit disk

to rational functions A/F , Q/F where F has all its zeros in |z| > 1
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and |Q|2 - |A|2 = w(f) |F|2 on |z| =1 . The polynomials A; and Q;

converge to zero in the unit disk. Note that A/F and Q/F are holomorphic
in [z’ < 1. This convergence result is much stronger than the fact that
An/Qn > A/Q uniformly in any disk |z| < & free of zeros of Q . Since this
result is not particularly relevant here, we will present it elsewhere, along

with a generalization to the full class 7ﬂp

Corollary 1. If f € Ci , then w(f) = 0 or w(f) > 1. These correspond

respectively to h{f) = 0 or h(f) > 1.

Proof: Since £2(0) 1is an integer, the first statement is immediate from (25).

The second statement follows from the characterization of Ci(l), [4].

Corollary 2. If f é'hll with pole at 9_1, then

u - (0 -8 h ) o7k

(35) w(f) < 6% - ) 0

n=0

un—k—l

Proof: The function g(z) = (1 - z0)f(z)/(6 - z) is holomorphic in |zl <1

and |g(z)| = |f(z)| on |z| =1 . Hence,
2 2 2 2
W) = fga - e = 0P Za - [gh
2 2 2
< 8 A - le]®) = 8% - 62—/¢(|g|2) )
using (20). The Taylor coefficients of g are
n-1
_ -1 -2 -k
v, o= w60 - (-8 kZO 6 u g

Thus an application of Parseval's relation completes the proof.

Corollary 3. 1If 6 € S, then w(B) < 62 -1
. -1 2 2
Proof: If fe Ci has its pole at 6 then (35) shows w(f) < 67 -u

0

< 62 - 1 . DMow apply Definition 3.
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Corollary 4. min S(h) > (h o+ 1)1/2

(h)

Proof: Let 6 = min S Then h < w(®) by Lemma 1, hence

2
h < 8 -1 by Corollary 3.

Corollary 5. If ©8& S, then, for any integer n > 1,

2(n-1) y

w®™ > n-1+08 (8)

Proof: Let f have pole 6_1 and satisfy w(6) = w(f). It may be shown,
as in [4,p.114] that, for j = 0,1,..., n-1 , the function

£ = |

m=0

n
u, z
j+mn

-n

is in 83, has a pole at z = B , and that if ¢ is a primitive nth root of

unity:
n-1 n-1
IlgeEh? = 5 ] Jeeta)
j=0 k=0
Thus,
WiE)) = 02" 1 - |f0|2) - 0" Ifo(zn)|2)

n-1 n-1
620 :fc{‘z lfjcz“)|2 + by - lf(ckz)lz)}

j=1 k=0
n-1 n-1

> ¢! {z fz(lfjlz) + 7ty Lo - lf(ckz)|2)}
j=1 k=0
n-1

_>_ 6211{ z UJ? 6-211 . ﬁ(l B |f|2) }

= Woe 02

We have used a few elementary changes of variable and éi(‘fjl) > 6_n|fj(0)l,
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by Jensen's formula, ignoring ary zeros fj may have in |z| <1 . Since

the uj are non-zero integers, Corollary 5 is now proved. (0f course

uj . 2067 so for large j the result can be improved).

Examples. 1. Let f=01 - 22)/(1 - kz - 22). Then Q(z)

k™ . Thus

W) = ey = k¥ . Note that 6 = (k+ (k=+)%)/2 ~ k , showing

that Corollary 1 is asymptotically sharp. Observe that An 1 -z and

Qn =1 - kz - 22 for n > 2, since we have seen that (12) is satisfied by

this pair. Thus w, = k2 for n > 2.

2. Let f=1/(1 - kz). Then Q(z) = -k (1 - kz + z%). Hence

W) = Zaah = ke + 20V« 2 21 Cx? . Thus
2 (K*-2)
h(f) < [w(f)] = k° - 2, which makes it conceivable that £ € &
2
and k & S(k -2) It is true that 2 ¢ 8(2) as shown in [9], but we do

2
not know if k é;S(k -2) for any other value of k. This is discussed

further in Section 5.

Corollary 6. If k>3, then

(36) wk) = ko + -0V H2 = w/a - k)
while
(37) w(2) = (3 +/5)/2 = w((l-2)/(1-22))

2 1/2
Proof: Let bk = kk + (k7-4) )/2. By Lemma 2, some f € ¢ has
w(f) = wk). Let f = Uy * Wz + ... as usual. Then uy = 1, for if
u, > 1, (35) shows that w(f) < k - 4 < b, . Again (35) gives
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2

WiE) < KD -1 - @y - (k- kT

Thus if Uy # k we would have w(f) i_kz -1 - (1 - k_l)z < bk , if k > 3.

So, if k > 3 then u, = k. Suppose that we have shown that w(f) 2-bk

1
implies u = k" for n = 0,1, ..., m ., Then
-1 -m -1
Ul C um(e -0 ) - ... - Uy 6 (6 -6 7)
_ _m -1 . -1, m+1 - (m+1)
= U kKitk -k ™) - ... k "k -k ) = Ul T k + k .
1f u A K" then (35) implies w(f) < k® - 1- (1 -k M2 o by -
m+1 . . . n
Hence U " k . Thus, by induction, if k > 3, then u, = k for all
n if w(f) EAbk' Thus f = 1/(1 - kz) and w(f) = bk .
The argument breaks down for k = 2, since u;, = 1 is equally suitable,

1

but a similar proof will give (37).

4. The width functional applied to sequences of functions.

We now return to the study of @3 . We first observe that w 1is far

from continuous on C?. To the contrary, we have
Lemma 4. If £ > f in € and £ #f for any n, then
lim sup w(fn) < w(f) - 1/w(f)

Proof: See the proof of Lemma 2, especially (6).

The following is obvious:
Lemma 5. If fn - f in Ci and fn # f for any n, then

lim sup h(fn) < h(f) - 1.
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We shall be interested in determining 1lim w(fn) for specific sequences

fn . We begin with some examples to motivate the next theorem:

1. Consider £ = 1/(1 - 3z) with w(f) = 3(3 + /5)/2 as we have seen.
One readily verifies the following equation for ]z[ =1,
n—2|2 n—1|2

11 - 32+ 2%% = 1+ (1-2[2+]1-2 + )1 -z

o R ek

Thus, for example foo= - zn_z)/(l - 3z + zn)GECi(l) ,and £ > f .

We calculate

2

P -3z ¢ 2 - 327 2™ - g - Mg - B2y,

= (1 - 3z + 22)(1 Tk N 22n—2)

3

and hence from Theorem 1, and Jensen's formula that
wE ) = ZOIL - sz e ) - s
2
= ((3+5)/2)" = w(f) -1
2. Before this last example leads us to seek an improvement of Lemma 4,

let us consider fn = 1/(1 - 3z + zn) . For this sequence, we have

(1 - 3z + 2@ - 3270 4 P B

(38) Q

22M1 - 327y s M- 3y - 327+ (- 32y

A numerical calculation of the zeros of Qn shows that, for

n=2,...,7, w(fn) = 3.732 , 5.552, 6.457 , 6.873 , 7.079 , 7.189 . This
suggests that w(fn) increases to a limit greater than 7. To obtain a

heuristic idea about the value of w(fn) we observe that Qn has a root

¢n with limit 3 as n > «, as is easily proved. To see how the other roots
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of o, in |z| > 1 may be distributed, let « satisfy WL,
Writing z = Cl/n w , we find that
02 = e’ - w0 -3 - e g s
This strongly suggests that Qn should have a root near gl/n w , where
r now satisfies

(39) 20l - 3w - cA -3 -38) + 5 (-3 = 0.
Now, for any fixed = eit » (39) indeed has a pair of roots gl(t) and
gz(t) with ’;l(t)l > 1 > ]gz(t)] . If the n-1 roots of o in

lz] > 1 other than ¢, are indeed sufficiently well approximated by

;1((2kn)/(n—1))1/n exp ((2kmi)/ (n-1)) for %k = 0,1, ., N-2 , we would have

n-2
log w(f) = logo_ + n' T log |2, ((2k1)/ (n-1))|

>

2m
> log 3 + (Zﬁ)—l J log |;1(t)| dt , as n-»
0

Thus, we might expect

(40) wee) > 3z

We shall give a correct proof of (40), following slightly different lines, which

relies on the following result:

Theorem 2. Let P(z,z) be a polynomial in two variables with complex

it iT

coefficients. Then, writing Z = e , L = e , we have

2T 0 -1 27 27
(41) lim J log [P(z ,z)]dt = (2m) J dt J log |P(C,z)] dt
n-—-owo 40 0 0
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3 P S = - 2 e 0 -
Proof: Write P(g,z) = ao(;) AN S aS(C) = ao(c)(z Zl(C)) (z ZS(C)),
where the zj are the branches of the algebraic function defined by P(z,z) = 0.

We have then

2m 0 2m n
(42) j log |P(z ,z)| dt = f log |a0(z )| dt
0 0
S 21
+ { log |z - z.(z)] dt ,
j=1 o J
whereas, by Jensen's formula,
27 S +
(43) J log |P(z,2)] dt = 2r { log |a,(@)| + ] log [zj(g)l )
0 j=1

Comparing (41),(42) and (43), we see that it suffices to show that

2T 0 27
(44) lim J log |a (z )I dt = J log |a (C)I dt s
0 0
n-ow /0 0
and
2T n 2m .
(45) lim J log |z - z.(z )] dt = J log |z,(z)] dr
n > o 0 J 0 J

Equation (44) follows from the change of variable T = nt. To prove (45),

let us, for convenience, write g(g) = zj(g) and then
2T . . 2mn . .

(46) J log ]elt - g(elnt)| dt = n_1 J log |elT/n - g(elT)I dt
0 0

2T -1 n-1 .
= J {n z log Iexp i((t + 2kmw)/n) - g(elT)l} dt
0 k=0

Our result is thus reduced to justifying the interchange of limit and integral
in (46) since the integrand in the right member of (46) is a Riemann sum
approximating an integral whose value is the integrand in the right member

of (45), as one sees by applying Jensen's formula. To justify this interchange,
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i i . . . . i
we shall expand log |e b (e "y| into a Fourier series in 't so that

it it s imt
(47) log |e" - gle™)] = ] ¢ (@e ,
m:—m
where, as we see from the Taylor expansion of log(l-w), cq(r) = log” [g(elT)[,
and im
-1 iT.*m -1 - i -
(48) c (1) = - Im| 7 ge™) or - |ml"" gle'™ ,
for m # 0, where the sign is such that |cm(T)| = exp {—|m| co(r)}
We then find that
-1 ¢ i
(49) n ) log |exp i((t + 2km)/n) - g(e T)j
k=1
- imt
= e + ) c (1) e ,

m#0

so that the desired interchange will be justified if
2m im
(50) lim ) \ J c () e dt = 0
n-> o m#0 0

To prove (50), we use the fact that g(z) 1is a branch of an algebraic
function and hence in the neighbourhood of any point o it has a
convergent expansion g(C) = g(CO) + afg - Qo)u + , where o is

a rational number. We can divide [0,2n) into a finite number of subintervals

I so that in each we have |g| <1 or lg] > 1 with equality at one endpoint

only, or else |g| = 1 throughout 1I. We can further assume that either
g' # 0 throughout I or else g' = 0 at one endpoint only. We thus can
write
2m it tmn imt
(51) J glem )7 e dt

0

as a sum of integrals over the subintervals. The contributions to (51) of

each term of this sum is one of the following:
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@ o™y with b< 1, if |g > toor

<b in I,

(ii) If |e| = 1 at one endpoint only, change variables so this point

becomes T = 0, and we have a contribution of the sort

¢ a Oy |mn] -1/a
J (1 - ct” +o0o(t)) dr = O(Imn] )
0]

(iii) If |g| = 1 throughout I and g' # 0 at any point in I,

note that g(elT) = elu(T) where u 1is real-valued and u' # 0. Integrating

by parts shows such an interval contributes O(lmnl_l).

(iv) If |g| =1 throughout I and g' = 0 at an endpoint, change
P

variables to obtain an integral of the type

3

€ inmu(t) _imt
J e e dt
0

a

where u(t) = c T + O(Tu) as T > 0+ , and o > 1. The integral over

_1/0(,] -1/OL

[0, |nm]| is 0(|nm| ) and the remaining integral can be treated as

in (iii) to obtain an estimate O(max(|nm]_1/d, |m\_1)). (Compare the

discussion of the 'method of stationary phase" in [8,pp.51-56]).
Combining (i)-(iv), we find that the sum in (50) is O(n—z) if g'(z)
does not vanish at a point where ]g(§)| =1, and is O(n—l_c) for some

0 < ¢c <1 otherwise. This completes the proof.

Remark. The above proof is admittedly quite complicated, and it is reasonable

to ask for a simpler proof under more general conditions. The following example

may be instructive: let G(elt) = exp(Zkit) for (2 - 22_k)v <t < (2 - 21—k)ﬂ

b4

for k=1,2,... . Then G 1is continuous on the circle except at t = 27.

Let F(e ,e ) = g(elt) - e'" . Then
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2m . .
f log |F(e™, e dt = -  for n=2°,Kk=1,2,...
0

but

2m 2n it it
J dt [ log IF(e ,e )| dt ,
0 0

I}
<

by Jensen's theorem applied to the inner integral.

Corollary 7. Let A/Q & Ci(z) and let B,C be polynomials such that

|A(z) + an(z)[_i Q(z) + an(z)l for [z] =1 and all n > 0, with equality

at a finite number of points at most, in each case. Let

K(z) = C(2)Qz 1) - Baz™h
L(z) = QA D) - A@ai ™ + ceycee™) - BB
NGz) = @+ @l - alk| DYy
If f o= (A4 z"B)/ (Q + z"C), then
(52) lin  w(f) = 2
n-> o

Proof: Write Ao(z) = A(z_l) for polynomial A . From Theorem 1, w(fn)

r

is the geometric mean of Qn = z Pn , where
Iz = @+ 20@ +27°¢%) - A+ "B + 2
= '+ L+ 2
Since lQ + 2"c| > |A + z"B] on |z| = 1, we know that I, > 0 on
|z] =1 . If 2z = exp(2mia) with o irrational we can choose n so that
|2"K(z) - |K(z)] | < € and hence we must have L > 2[K| for such z, hence

for all |z| = 1, by continuity. According to Theorem 2, and Fubini's theorem,
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27 27
lim ﬁ_(Q ) = exp L dt L log |zK + L + c_1K0‘| dt
n 2T 27
n -> oo 0 O

Evaluating the inner integral by Jensen's formula, we obtain (52), since

the above discussion shows that the modulus of the larger zero of

K+ gL+ K% = 0 is N/|K|.

. _ B n
Examples: 1. Returning to the example fn =1/(1 3z + z7) we have

K(z) =1 - 32_1 , L{z) = (1 - 3z2)(1 - 32_1) and hence, on |z| = 1,

L2 - 4fk]? = 1% - 4L = 3L(1-2)(1-27Y). Using (19), we can estimate

Low - a? - HY s w2 s oo a-2 )Y,
= (9 + 3/3)/2 > 7.098 .

Thus lim w(fn) > 7 and hence w(fn) > 7 except for a finite set of
n > oo

values. However, Lemma 5 shows that lim sup h(fn) < h(f) -1 < 6.
Thus, it is not true in general that h(f) = [w(f)] for f € Cf , as one

might have hoped.

2. We have seen that w(2) = w((1-2)/(1-22)) = (3 + ¥5)/2 and thus
that w(2) - 1/w(2) = V5 > 2 . Lemma 4 thus does not rule out the
possibility that lim w(fn) > 2 for some sequence fn tending to
(1-2z)/(1-2z) so possibly there might be 6 < 2 with w(6) > 2. We shall
show that this is not the case. Amara [1] has determined all §) G:S(l)
with 8 < 2 and all associated f & tigl) , S0 it is only necessary to
examine these f, which are:

fo = (1 + 2z - 22 - 23)/(1 -z - 222 + 24) s

£= (- -2, a3,
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f2 _— (1 - z)(1 - zn_l)/(l - 2z + zn) , n>3

g 4, ° (1 -z + zn)/(l -2z + 20 - zn+1) s n>2 s
n-1 n n n+l

8y o = (1 -z +z2)/(1 -2z + 2z -z ), n>2

g, = Q-2 +/a -2z oM a0

We find, using Theorem 1, that

wiE) = Z(1 -2+ 2tH) =

Wik, )= &L - 2121 - 22y o
wig, 0= - -,
and
wiey ) =wie, )= LOI-zP -2y -

leaving only 8z o for which we find

Q= R P R N S I C

3

and hence that N(elt) in Corollary 5 is given by

N(eit) = 1/2 sin(t/2) if |t] < /3

2 sin(t/2) if m/3< t < 7w

Thus, we have

5 m/3
lim w(gs,n) = :i(N) = exp {E_J - log(2 sin(t/2)) dt} s

n > o 0

T
where we have used the well known fact that J log(2 sin(t/2)) dt = 0
0

to show that the integrals of 1log N over [0,7/3] and [n/3,m] are equal.

The integral can be evaluated by setting u = 2 sin(t/2) to obtain
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1 e 1
J (- log u) (1 - 117'/4)_1/2 du =} [—léZJ (-1/8)" J (- log u) u2m du
0 n=0 0
y [-1@2] -1/9)™ n+ 1)7% = 1.014941606
m=0 )

which gives  (N) = 1.908145627 . The fact that & (N) < 2 could also

1
be seen from 1 - u2/4 > 1 - u2 and J (-log u)(1 - UZ)_l/Z

0

du =(m log 2)/2.

Thus, at most a finite number of w(g3 n) are > 2. By making careful

estimates as in the proof of Theorem 2, we shall show that no such n exist.

For, we can factor Q= (zn -z + 1)(zn - zn-1

1 + 1) and hence we have

ﬁ%(\Qn1) = :2(|zn -z + l|)2 . Now we can write

log leiT _ eit + 1l - z Cm(T) eimt ,
m =~ ’
where , for m # 0,
|cm(T)| = (2|m|)_1(2 cos(T/Z))_lm‘ if || < 2n/3

(2\m|)_1(2 cos(T/Z))lm‘ if  2n/3 i.lT| <

As in (49), we have

2T .
l log 1%(|zn -z + 1)) - (Zﬁ)_l J log" |1 + elTIdT
0

7 oen [ e @)
< (2m) J c (1) dt
- m#0 g

We have the following estimates, taking m > 0 :

m 1
J (2 cos(t/2)™ dt = J ot (1 - u?/a) 2 g
2n/3 0
! 1
< @[ WMao< o
0

Also
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2/ 3 1

-1/2
(54) J (2 cos(t/2)) " dr = J (1 +w) ™ {1 - (1+u)2/4} du .

0 0

If we divide the integral on the right into two integrals over [O0,c] , [c,1],
where c = (2m)1/m - 1, and estimate each in the obvious manner, we find
that the integral in (54) is bounded by

2nt @ - em¥/myl/2 {(Zm)l/m 1 -1/2m) + 2 - (2m)/™ }

1 2/m

< ant @ @m?/ml/2

1

) 2.7095 m ~ , if m> 10 .

Thus, we obtain .
(2m) " [ le ()] dt < .6150 n?  for |m| > 10 ,

and hence that the error in (53) is bounded by

] L6150 m°n"? = (n%/3)(.6150) nT° = 2.0233 0> for n > 10.

m#0
This suffices to show that w(g3 n) < 2 for n > 10, and in fact to show

that
max w(g3 n) = w(g3 5) = 1.987738267
n 2 2

so that w(g) for 6 < 2 atteins a maximum for 6 = 1.267168213 , the

largest vroot of 1 - Zz + 25 - z6 with

Wl -2+ 20 - 29/ - 22 + 2° - %))

1

w(6)

G. The derived sets of S.

According to Corollary 6 and Lemma 1, if 6 is the rational integer Kk,

we have h(k) < [wk)] = k2 - 2 . The estimate h(k) >k - 1 [13,p.57]

follows by applying Rouche's theorem to the polynomial
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n
1 -kz+ 20+ ..+ 72Kkl

This has a single root in ]z\ <1, say 1/ en N which depends on
100 oM

k - 1 parameters, each of which can tend to « independently, the ultimate
limit being k_% We suspect that h(k) ~ k2 is correct, but have been
unable to show this. We do have the following which at least shows that the

most pessimistic guess, h(k) = k, is not correct for large k.

Theorem 3. For 6 = k a rational integer,
(55) h(k) > max ( 2[a(k-1)], 2[a(k-2)] + 1) ,
where a = 1/(2/2 - 1) > 1/2 . In particular ,

lim inf (min S(h)/h) > 20 > 1

a b a+c b+c

Proof: Let P(a,b,c;z) = z  + 2z + z -z , for integer a,b,c
Then, for !z| =1,
|P(a,b,c;z)|2 = \za + zb]2 A Z_C)(za—b - zb_a) + Iza - zb|2 < 8,

combining the first and last terms and using the parallelogram law. Thus,

if 2 -1 > 2/2m and Ny, -.. , Mg are arbitrary positive integers,

then the following polynomial has exactly one zero in ]zl < 1:

1 - 2z + P(nl,nz,nsgz) + ...+ P(n3m-2’n3m-1’n3m;z)

This shows that 2 éfS(Sm) n tend to « 1in a

since we may let Ny .. I

suitable order, (i.e. n n may not both be allowed to tend to o until

1772
we have let ng > o or else we "'lose'" the parameter n. ).
We can specialize Ngoiq = 1 for 1<1i<j, where j <m and obtain

a polynomial which shows that k=2 -3 € S(Sm—J) if 2-1 > 2/2 m .




slem) ¢

The most favourable choice of j is j =m, giving k &

(2m+1)

k- 1> (2/2 - I)m , orelse j =m-1 ,giving k€ S if k-2 >

(2/2 - 1)m. These combine to give (55).

Remarks. 1. For 3 f_k < 11, Theorem 4 gives only h(k) >k -1, but
for 12 <k <22 it gives h(k) > k and for larger k we have h(k) > k ,

e.g. h(23) > 24,

2. There is a possibility of obtaining improved upper bounds on h(9)
in the following way: Grandet-Hugot [9,p.24] states that if 6 &€ S(h)
and A/Q € C(h) is the associated rational function, and if ené S 1is

associated with the polynomial Q(z) + znA(z) , then (%lE.S(h_l) . Since

2 9§ 8(3) is associated with 1 - 2z = (1 - 3z) + z(1), this would appear
to show that h(1l/(1-3z)) < 3. However, the result in question may fail
for a finite set of n corresponding to values for which anI + CI =0,

for certain I, in the notation of [9]. Since we do not know a priori

whether n 1is one of these values, we cannot draw the desired conclusion.

3. We conclude by showing that h(2/(1-3z)) = w(2/(1-32z)) = 3, which

shows that h(3) > 3. We calculate Q = - 3(1—2)2 so that w(f) = 3 by
Theorem 1. To prove that f & Ci(s) it suffices to show that fm né Ci(l),
where
I s i~ e

? 1 - 3z + 22 -z (1-z) + z (1-2)

This can be verified directly, but we shall show how it was derived. We
begin by seeking C/D which differ from A/Q in the nth coefficient.

According to [9,pp.9-12], these all have the form




-32-

c/p = U+ 2%y u o+ 20y

where V,U are polynomials with integer coefficients which satisfy

|V/U| <1 on |z] =1, and we have written A°(z) = A(z—l) , 0%(2) = Q(z—l).

The polynomials C,D may have a common factor, but this must be a factor of
Q2 . The easiest case to handle is V/U holomorphic in |z|f_1, since this
automatically ensures the correct number of zeros of D in |z] <1 . We
must have U(0) | 2(0) , and U(0) = 1 1is easily seen to be of no value here,

n+1

so we try U(0) = 3. We find that the choice U = 3 - 2z , V-1 makes

(1 - 32)U + 22"V divisible by 3 . Letting C, = C/3and D =D/5 we

1

n+2
have C1 =2 -2z -2z s D1 =1 - 3z + 2z and Q(Cl,Dl)

2(1-2)2(1 - zn+1)2 , using an obvious notation. Hence w(Cl,Dl) = 2.

Observe that Cl(l) = Dl(l) = 0 ; however it is unnecessary to divide by

(1 - z), and it avoids complications if we do not.

m+n+2_0 m+n+2 .0

Now we seek E/F = (UIC1 + Dlvl)/(UlD1 + 7z clvl) , where any

common factor of E and F divides Q(Cl,Dl). The choice U, = 2 - zm+1

1
V1 =1 makes E =F = 0 (mod 2). Dividing E and F by the common factor

_ . ~ n+l,2 m+1l.2
2(1-z) produces fm . C2/D2 of (56) with Q(CZ,DZ) = (1 - z )7 -z )

b
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